

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

EXAMINATION FOR FRESHMEN (SECOND YEAR) STUDENTS OF PHYSICS, M. SCIENCS AND BIOPHYSICS

1969	COURSE TITLE:	V	COURSE CODE PHZ121	
DATE:	25/12/ 2017	TERM: FIRST	TOTAL ASSESSMENT MARKS:100	TIME ALLOWED: 2 HOURS

Answer The Following Questions

First Question:

(25 mark)

In two LC electrical circuits which are inductively coupled with mutual inductance M, Find the resonate frequencies at which energy exchange between the two circuits

Second Question:

(25 mark)

- a) Prove that the energy of a simple harmonic oscillator is constant.
- b) If the equation of motion of a forced oscillator is given by: $2x + 4x + 32x = 20\cos(4t)$ then find:
 - a) The resonance frequency of the velocity.
 - b) The maximum value of the velocity.
 - c) The resonance frequency of the displacement.

Third Question:

(25 mark)

- a) Find the period of oscillation for a mass m fixed at a center of a light string of length 2L fixed at both ends under a constant tension T.
- b) Prove that the solution $x = (A + Bt)e^{-\frac{rt}{2m}}$ satisfies the equation mx + rx + sx = 0 when $\frac{r^2}{4m^2} = \frac{s}{m}$

Fourth Question:

(25 mark)

- a) Define the logarithmic decrement. If the normal frequency of an oscillator is 20 cycle/sec while the damping frequency is 16 cycle/sec, find the logarithmic decrement of this oscillator.
- b) The equation of motion of a forced oscillator is given by $mx + rx + sx = F_o e^{iwt}$. Find the steady state displacement and the velocity of the given oscillator.

EXAMINERS	PROF.DR. G.A.GABALLAH	 -		

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

FINAL EXAM. FOR BIOPHYSICS (LEVELTWO)

COURSE TITLE: Introduction For Thermodynamics COURSE CODE: PH2181

WHICE DEPARTMENT.

DATE: 23/12/2017

SEMESTER:FIRST

TOTAL ASSESSMENT MARKS: 100

TIME: 2 HOURS

Answer the following questions:

Question [1]		[25Mar\]
(a)-Deduce the equation of	of state as a function of T , V of a	ın ideal gas at reversible
adiabatic process.	·	[9Marks]
(b)-Define: The zeroth is	aw of thermodynamics _The mean	n heat capacity .The specific
Enthalpy & The inter	nal energy of the system.	[8Marks]
(c)-Draw projection of a	number of isotherms of an ideal e	equation onto the P-T plane.
		[8Marks]
Question [2]		[25Mark]
(a)-Deduce the critical cor	nstants of a van der Waals gas.	[9 Marks]
(b)-Prove that $\left(\frac{\partial h}{\partial T}\right)_h$	$= c_{P}$,	[8Marks]
(c)-Explain equation of sta	ate of real gases.	[8Marks]

Question [3]		[25Mark]
(a)Write short notes ab	oout the following:	[14Mark]
(i)-Work in a volume cha	ange ,and (ii)- Specific heat cap	acity at constant volume.
(b)-Compare between the	following Figures:	[11Mark]
		انظر الى خلف الورقة
PH2181	Dr S. G.L. Attar	23/12/2017

TANTAUNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

EXAMINATION FOR SESOND YEAR STUDENTS OF PHYSICS ANDBIOPHYSICS

COURSE TITLE:

ACOUSTICS

COURSE CODE: PH2141

DATE: 27 DECEMBER 2017

TERM: FIRST

TOTAL ASSESSMENT MARKS: 100 TIME ALLOWED: 2 HOURS

(25 marks)

Answer the following questi	ver the	following	auestions
-----------------------------	---------	-----------	-----------

- T	Complete The general equation of the complex wave is	(10 marks)					
- T	n the state of the complex years is						
-	he general equation of the complex wave is						
- T	he back scattering is	*******					
- 1	Ultrasound waves in medicine are used in	and					
- Т	The blood flow velocity is given by	***********					
- A	hydrophone is a microphone used to measure	***************************************					
E	3-Talk about scattering phenomena and scattering of sound w	vaves. (10 marks)					
	C- How to calibrate a hydrophone?	(5 marks)					
 S	Second question	(25 marks)					
Ā	A- Prove that $f_o = f_s(\frac{v + v_o}{v - v_s})$	(10 marks)					
ŀ	3-define: acoustic power – transducer – attenuation	(15 marks)					
	Third question (25 marks)						
	Talk about interference of sound waves.	(10 marks)					
	B- A sound wave has frequency 700Hz in air and a wavelength of 0.5 m. what is the temperature of air?(5 marks)						
	C-What is piezoelectricity? Are all materials suitable to be pi						
	o what is prosecutively						
]	Forth question (25 mar	·ks)					
	A- Two sounds have measured intensity of $I_1 = 200 \text{ W/m}^2$ and $I_2 = 100 \text{ W/m}^2$. What is the difference between them in						
	Decibel level?	(7.5 marks)					
	B- How ultrasound waves used in welding process?	(7.5 marks)					
	C- Show how Doppler Effect is used in imaging technique? (10 marks)						

انتهت الأسئلة

© Best Wishes © ©

V C

1st SEMESTER

TANTA UNIVERSITY FACULTY OF SCIENCE

FINAL EXAM OF MAJOR ZOOLOGY, Chemistry / Zoology, Biophysics

MARKS: 150

BIOCHEMISTRY, CHEM/BIOCHEMISTRY Divisions

COURSE TITLE:

Cell Biology and Genetics

TERM:

DATE OF EXAM: ASSESSMENT TIME ALLOWED:

JAN, 2018

First Question:

(75 marks)

2 HOURS

ATY 6 De M

Q1-a: What is different between four only of the following: 30 marks

- 1. Apoptosis and necrosis.
- 2. Atrophy and hypertrophy.
- 3. Histology and histopathology.
- 4. Hyperplasia and metaplasia.
- 4. Contrast and resolution.

Q1-b: Write on two only of the following: 15 marks

- 1. Causes of cell injury.
- 2. Importance's of apoptosis.
- 3. Biochemical and physiological responses to cell signaling.

Q1-C: Identifid only four of the following: 20 marks

- 1. Infarction
- 2. Depth of Field
- 3. Cell

- 4. Centrifugation
- 5. Oedema
- 4. Postmortem change

Q1-D: With full labeled drawing illustrate one only of the following: 10 marks

- 1) The morphology of apoptosis and necrosis.
- 2) Cell fractionation to separate the major organelles of the cells.

Second Question:

(75 marks)

Q2-A: Explain the following briefly using illustrations when necessary (20 Marks):

- 1. Explain the differences between studying genetics in Biochemistry, Biophysics and Zoology branch of your specialties.
- 2. Explain the role of the three types of RNA during the formation of a protein.
- 3. What happens when the ability to repair damage caused by UV light is deficient in a family.
- 4. Explain briefly the early mechanisms by which how cells decide to start BER.

Q2-B. True ($\sqrt{\ }$) or False (X) (if false, write the correct answer) (20 marks):

- 1. DNA exists only in nuclei, while RNA exists only in cytoplasm.
- 2. All DNA in eukaryotic cells comes from both parental and maternal origins.
- 3. The origin of replication exists at the beginning of each chromosome.
- 4. Splicing process in DNA repair starts due to activation by the UV light.
- 5. The mechanism of P-factor depends on hair pin.
- 6. Initiation of transcription in eukaryotes involves recognition of promoter by transcription factors.
- 7. Prokaryotic transcripts must not be processed to produce mature mRNAs.
- 8. The leading strand reading from 5' to 3' is the template strand.
- 9. Linker histone consists of about 146 bp of DNA wrapped in 1.67 left-handed superhelical turns around the histone octamer.
- 10. The genetic code is redundant: this means it has multiple codes amounting to the same arnino acid.

Tanta University Faculty of Science

Department of Physics

Final First Term Examination

Academic year 2017/2018

Mathematical Physics Course (1)

Course Code: PH 2161

Physics

Date: 3 /1/2018

Time allowed: 2 hours

Solve the Following Questions:

First Question:

(a) By variables separation, solve the following differential equation

$$\frac{dy}{dx} = e^{(2x+2y)}$$

(b) Prove that

$$\begin{vmatrix} x^2 & x & 1 \\ y^2 & y & 1 \\ z^2 & z & 1 \end{vmatrix} = (x - y)(y - z)(z - x)$$

Second Question:

(a) Make sure that the next differential equation is homogeneous, then find its general solution

$$x\frac{dy}{dx} = y + \sqrt{x^2 - y^2}$$

(b) If the matrisies

$$A = \begin{bmatrix} -1 & 3 & 1 \\ -2 & 2 & 4 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \quad , \quad C = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
Find
$$AA^{T}, BC, B^{T}C$$

Third Question:

(a) Find the differential equation of the equation:

$$(x-a)^2 + y^2 = a^2$$

where a is an arbitrary constant.

(b) According to Newton's law of cooling, which states that "The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings". If a ball of Copper of temperature 100°C, is putted into water of temperature 30° C. After 3 minutes the temperature of the ball became 70° C. After what time the temperature of the ball will be 31°C.

(بقية الاسمالة في الصفحة التالية) Turn the page over

	TANTA UNIVERSITY- Faculty of Science - Department of Physics					
	EXAM FOR 2 ND YEAR BIOPHYSICS STUDENTS					
	COURSE TITLE:	General Biophysics		COURSE CODE: B#2110		
DATE:	6 JAN 2017	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS		

Answer the following questions

Question one (25 points)

- A- Write about one of the presentations.
- B- Calculate the image at the retina of an object 220 cm tall standing 3m from the eye.
- C- Explain and draw the confocal microscope

Question two (25 points)

- A-Explain the voltage clamp
- B- Compare between the types of levers
- C- Complete the following:
- 1- The speed of propagation (V) of any wave is given by
- 2- Sound waves can be classified into and and
- 3- The process of focusing in the human eye is called
- 4- The depth of field is
- 5- Fovea is in diameter and it consists of
- 6- The molar extinction coefficient is
- 7- X-ray crystallography operates on the principle ofwhich occurs

when light waves

8- In NMR, nuclei that shielded by electrons will experience

so the energy difference between their spin

العلوم . حامعة العلوم . حامعة العلوم . العلوم . العلوم العلام Please turn the page for the other questions

4.]			NIVERSITY- Faculty of Science -Departmen		
	COURSE TITLE	EXAM FOR LEVEL TWO STUDENTS OF BIO- AND GE ETITLE Electromagnetism 1		OPHYSICS COURSE CODE: 2184	
DATE:	-1-2018	TERM: FIRST	TOTAL ASSESSMENT MARKS:	TIME ALLOWED: 2 HOURS	

First Question:

- 1) The three vertices of regular tetrahedron are located at O (0, 0, 0), A (0, 1, 0), B (0.5 $\sqrt{3}$, 0.5, 0), and C ($\frac{\sqrt{3}}{6}$, 0.5, $\sqrt{\frac{2}{3}}$). Find, [10marks]
- a) A unit vector perpendicular (outward) to face ABC;
- b) The area of face ABC.
- II) <u>Define</u>: Coulomb's law, potential difference, potential at a point, Faraday's law.

[15marks]

Second Question:

- I) Point charges of 50nC each are located at A (1, 0, 0), B (-1, 0, 0), C (0, 1, 0) and D (0, -1, 0) in free space. Find [15marks]
- a) The electric field at point P (0, 0, 1).
- b) The electric potential at point P (0, 0, 1).
- II) <u>Deduce</u> the electric field of near infinite charged conducting sheet having a uniform density ρ_s C/ m^2 . If a second infinite sheet charged conducting sheet, having a negative charge density $-\rho_s$ C/ m^2 , is located at distance x=a from the first, <u>find the total</u> field in the region inside and outside the two conducting sheets.

Third Question:

- I) Using gauss's law, <u>find</u> the electric field (\vec{E}) of a point charge (Q), and then find the potential difference between two points A and B around the point charge. [10marks]
- II) State first Maxwell Equation.

[10marks]

III) <u>Find</u> the divergence of electric field density $(\overrightarrow{\nabla}, \overrightarrow{D})$ in the region about a point charge (Q) located at the origin.

Fourth Question:

- Find the required electric work (W) to move electric charge (Q) between two points A and B in a uniform electric field (E).
- II) <u>Prove</u> that the electric field vector equals exactly the gradient of electric potential $(E = -\nabla V)$.

[10marks]

EXAMINER

DR. REDA EL-SHATER

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS

2500

	BIOPHYSICS		LEVEL 2 EXAMINAR DR. A		YWAN EL TAHAN	
1940	COURSE TITLE:		Classical Me	chanics	COURSE CODE: PH 2	125
DATE:16	JAN, 2018	TERM: FIRST	TOTAL ASS	ESSMENT MARKS: 100	TIME ALLOWED:	2

First question:

1- Choose the correct answer:

- I If two different masses moved in contact, then
 - a) They will have moved with a different acceleration and same force
 - b) They will have moved with the same acceleration and different forces
 - c) They will have moved with a different acceleration and different forces
 - d) They will have moved with the same acceleration and same force
- II A ball is thrown up in the air. It goes up and then eventually comes down again. On its way up (after being let go), which is correct?
 - a) Its acceleration decreases
 - b) Its acceleration increases
 - c) Its accelerations stay pretty much the same
 - d) Impossible to stay unless its direction relative to the horizontal is known.
- A projectile is fired at an angle of 30° to the horizontal. An identical projectile with the same initial velocity is fired at an angle of 60° to the horizontal. Which projectile has the greater range (ignore air resistance)?
 - a) The projectile fired at an angle of 60°.
 - b) The projectile fired at an angle of 30°
 - c) Without knowing the mass, it is impossible to say.
 - d) They both have the same range.
- IV A woman exerts the constant horizontal force on a large box. As a result, the box moves across a horizontal floor at a constant speed " v_0 ". The constant horizontal force applied by the woman:
 - a) Has the same magnitude as the weight of the box.
 - b) Is greater than the weight of the box.
 - c) Has the same magnitude as the total force which resists the motion of the box.
 - d) Is greater than either the weight of the box or the total force which resists its motion.
- V Which of the following is an accurate statement?
 - a) The vector sum of the tangential acceleration and the centripetal acceleration can be zero for a point on a rotating disk.
 - b) All points on a rotating disk experience the same radial acceleration.
 - c) All points on a car tire have zero acceleration if the car is moving with constant linear velocity.
 - d) All points on a rotating disk have the same linear speed.
 - e) All points on a rotating disk have the same angular velocity.

Continu